N14	0.6258 (6)	0.3170 (5)	0.7260 (5)	0.043 (2)
N17	0.5202 (6)	0.1872 (6)	0.9257 (5)	0.044 (2)
01	1.0030 (6)	0.8048 (6)	0.2355 (5)	0.065 (2)
02	1.1582 (7)	0.9571 (6)	0.4269 (6)	0.073 (3)
04	0.8089 (5)	0.5812 (5)	0.2452 (4)	0.051 (2)
C2	1.0377 (8)	0.7759 (6)	0.5856 (6)	0.039 (3)
C3	0.9835 (8)	0.7460(7)	0.4455 (7)	0.042 (3)
C4	0.8605 (7)	0.6169 (7)	0.3722 (6)	0.040 (3)
C5	0.6600(7)	0.4150 (6)	0.4026 (6)	0.037 (3)
C6	0.6010(7)	0.3413 (6)	0.4883 (6)	0.037 (2)
C7	0.6777 (7)	0.3818 (6)	0.6327 (6)	0.036 (3)
C9	0.8572 (7)	0.5744 (6)	0.6016 (6)	0.035 (3)
C10	0.7935 (7)	0.5352 (6)	0.4598 (6)	0.036 (2)
C11	1.0541 (8)	0.7313 (7)	0.8130 (6)	0.047 (3)
C12	0.9700 (10)	0.8257 (8)	0.8752 (7)	0.070 (4)
C13	1.0571 (9)	0.8469 (8)	0.3716 (8)	0.052 (3)
C15	0.6902 (9)	0.3871 (8)	0.8681 (7)	0.054 (3)
C16	0.5637 (9)	0.3447 (7)	0.9383 (7)	0.052 (3)
C18	0.4538 (8)	0.1196 (7)	0.7814 (6)	0.045 (3)
C19	0.5779 (8)	0.1571 (6)	0.7116 (7)	0.046 (3)
C20	0.3996 (9)	0.1520 (9)	0.9936 (8)	0.064 (3)

Table 2. Selected geometric parameters (Å, °)

	-	-	
C1—C6	1.738 (5)	C1301	1.341 (9)
N1-C2	1.321 (9)	C13O2	1.203 (8)
N1-C9	1.379 (7)	N14C15	1.446 (8)
N1-C11	1.481 (8)	N14-C19	1.486 (7)
C404	1.250 (7)	C16—N17	1.464 (9)
C7—N8	1.345 (7)	N17—C18	1.460 (7)
C7—N14	1.368 (9)	N17—C20	1.466 (11)
N8—C9	1.349 (9)		
C9-N1-C11	119.7 (5)	N1-C11-C12	113.4 (6)
C2-N1-C11	120.7 (5)	C3C13O2	124.0 (7)
C2-N1-C9	119.6 (5)	C3C13O1	114.6 (7)
N1-C2-C3	124.4 (6)	01-C13-02	121.4 (7)
C3-C4-04	123.5 (6)	C7-N14-C19	122.8 (5)
C10-C4-O4	122.5 (6)	C7-N14-C15	119.2 (5)
C1-C6-C5	117.2 (5)	C15-N14-C19	111.0 (5)
Cl—C6—C7	122.1 (5)	N14-C15-C16	109.5 (6)
C6C7N14	124.6 (5)	C15-C16-N17	110.5 (6)
C6-C7-N8	119.6 (5)	C16-N17-C20	108.6 (6)
N8-C7-N14	115.6 (5)	C16-N17-C18	109.2 (5)
C7-N8-C9	120.3 (5)	C18—N17—C20	110.4 (6)
N1-C9-N8	117.1 (5)	N17-C18-C19	110.3 (5)
N8-C9-C10	122.7 (6)	N14-C19-C18	109.7 (5)
N1-C9-C10	120.2 (6)		
C9-N1-C11-C12	-87.0 (7)	C6-C7-N14-C19	45.7 (9)
C2-N1-C11-C12	89.2 (8)	N8-C7-N14-C15	8.7 (8)
C6-C7-N14-C15	-166.3 (6)	N8-C7-N14-C19	-139.4 (6)

Refinement was by full-matrix least squares methods. Of the 19 H atoms, 18 were calculated and not refined.

Programs used to solve structure: *MULTAN78* (Main *et al.*, 1978). Programs used to refine structure: *SHELX76* (Sheldrick, 1976). Molecular graphics: *ORTEPII* (Johnson, 1976). Software used for geometrical calculations and to prepare material for publication: *PARST* (Nardelli, 1983). All calculations were performed on a Super 32 computer (VECC, Calcutta).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: VJ1004). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. Harvey, S. C. (1975). The Pharmacological Basis of Therapeutics, 5th ed., edited by L. S. Goodman & A. Gilman, pp. 987–1017. New York: Macmillan.

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Huber, C. P., Sake Gowda, D. S. & Acharya, K. R. (1980). Acta Cryst. B36, 497-499.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Macíček, J., Tcholakova, J. & Parvanova, M. (1993). Acta Cryst. C49, 788-790.
- Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Matsumoto, J., Miyamoto, T., Minamida, A., Nishimura, Y., Egawa, H. & Nishimura, H. (1984). J. Med. Chem. 27, 292–301.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.

Acta Cryst. (1995). C51, 980–982

Methyl (2*S*,6*S*:2*R*,6*R*)-6-(2-Cyanoethyl)-4,6-dimethyl-2-morpholineacetate

GUOBIN SUN AND FRANK R. FRONCZEK

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

RICHARD D. GANDOUR*

Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0212, USA

(Received 9 March 1993; accepted 5 April 1994)

Abstract

The morpholine ring of the title compound, $C_{12}H_{20}N_2O_3$, adopts a chair conformation with an equatorial (methoxycarbonyl)methyl group. The cyanoethyl and (methoxycarbonyl)methyl groups are *trans* with respect to each other. The global minimum conformation, as computed by *PCMODEL* [Gajewski & Gilbert (1992). *Molecular Modeling Package*. Version 4.0], of the title compound agrees with that observed in the crystal. In the crystal, the torsion angles (N=)C-CH₂-CH₂-C(O), (N=C)CH₂-CH₂-C(O)-O(CH₃) and (O)CH-CH₂-C(O)-O(CH₃) have values -170.0 (1), -45.9 (2), -71.6 (2) and 142.8 (1)°, respectively.

Comment

As a part of an effort to synthesize the four possible stereoisomers of our reaction-intermediate analogues for carnitine acyltransferases (Gandour, Blackwell, Colucci, Chung, Bieber, Ramsay, Brass & Fronczek, 1992), we prepared the title compound, (I). We undertook the structure determination to assign the relative stereochemistry of this racemate and, by inference, that of the diastereomer. This isomer has a melting point of 322.0–323.0 K. The morpholine ring is in a chair conformation. The (methoxycarbonyl)methyl group and methyl group on C3 are *cis* to each other and both occupy equatorial positions, as does the *N*-methyl group.

The molecule contains two side chains which each have two freely rotatable bonds: C11—C10 and C10—C3 for the 2-cyanoethyl group and C2—C6 and C6—C7 for the (methoxycarbonyl)methyl group. 81 staggered conformations are possible for this set of torsion angles. We were interested in finding out if the conformation in the crystal was the same as the global minimum obtained from molecule-mechanics calculations.

We used *PCMODEL* (Gajewski & Gilbert, 1992) to calculate the energies of all possible staggered conformations. Each calculation began with idealized values of the torsion angles and was completely minimized. We also used GMMX (Serena Software, 1992), a global-minimum search routine. Both methods found the same lowest-energy conformation.

The global minimum has torsion angles C12— C11—C10—C3 179.2, C11—C10—C3—O1 -50.5, O1—C2—C6—C7 -60.0 and C2—C6—C7—O3 140.2°. In the crystal, these torsion angles are -170.0 (1), -45.9 (2), -71.6 (2) and 142.8 (1)°, respectively. We conclude that these are similar conformations. Eight bond distances in the global minimum differ by > 0.02 Å from those of the crystal structure; C1—C2, C2—C6 and C3—C4 appear short in the crystal. Six angles differ by > 2.0°, C7—O3—C8 being the most disparate. The *PCMODEL* results are included in Table 2.

The Cambridge Structural Database (Allen, Kennard & Taylor, 1983) contains structures for some N-oxide and N,N-dialkylmorpholinium compounds, but no structure of an N-methylmorpholine. All structures have chair conformations. When compared with meso-2,6-bis(carboxymethyl)-4,4-dimethylmorpholinium bromide (Colucci, Gandour, Fronczek, Brady & Brady, 1987) and 6-(carboxymethyl)-2-hydroxy-2,4,4-trimethylmorpholinium chloride (Gandour, Blackwell, Colucci, Chung, Bieber, Ramsay, Brass & Fronczek, 1992), both of which adopt chair conformations with equatorial carboxymethyl groups, the title compound exhibits no significant differences in either the O1-C2 and O1-C3 bond distances or the bond angles and torsion angles within the morpholine ring. The

C1-C2 (or C3-C4) and N1-C1, N1-C4 and N1-C5 bond distances in the title compound are about 0.02 and 0.08 Å shorter than those in the two morpholinium compounds, respectively. We assume that the positive charge and the steric crowding of the groups attached to the quaternary N atom increase the bond distances in the morpholinium compounds. The torsion angles O1-C2-C6-C7 $[-71.6 (2)^{\circ}]$ and C2-C6-C7-O3 [142.8 (1)^{\circ}] in the title compound are almost the same as those [-68.5(2)] and $153.1(2)^\circ$, respectively in meso-2.6-bis(carboxymethyl)-4,4-dimethylmorpholinium bromide, but different from those [-168.7(2)] and -174.5 (2)°, respectively] in 6-(carboxymethyl)-2-hydroxy-2,4,4-trimethylmorpholinium chloride. Calculations and NMR studies of carnitine and acetylcarnitine (Colucci, Gandour & Mooberry, 1986) indicate only a small difference in energy between anti and gauche(-) rotamers about the $(O)CH-CH_2COO^-$ bond.

Fig. 1. View of the title compound showing the numbering scheme with displacement ellipsoids drawn at the 40% probability level. H atoms are drawn as circles of arbitrary radii.

Experimental

Mo $K\alpha$ radiation
$\lambda = 0.71073 \text{ Å}$
Cell parameters from 25
reflections
$\theta = 9 - 11^{\circ}$
$\mu = 0.08 \text{ mm}^{-1}$
T = 297 K
Lath
$0.55 \times 0.28 \times 0.08 \text{ mm}$
Colorless
Crystal source: crystallized
from hexane

$\theta_{max} = 25^{\circ}$ $h = 0 \rightarrow 6$ $k = -10 \rightarrow 10$ $l = -16 \rightarrow 16$ 3 standard reflections frequency: 166.67 min	$\begin{array}{c} C7-O3-C8\\ C1-N1-C4\\ C1-N1-C5\\ C4-N1-C5\\ N1-C1-C2\\ O1-C2-C1\\ C4-C3-C9\\ C4-C3-C10\\ \end{array}$	116.2 (1) 108.5 (1) 112.1 (2) 111.4 (1) 109.1 (1) 110.7 (1) 110.7 (1)	122.8 109.4 111.5 111.6 110.3 110.3
$b_{max} = 2.5$ $h = 0 \rightarrow 6$ $k = -10 \rightarrow 10$ $l = -16 \rightarrow 16$ 3 standard reflections frequency: 166.67 min	C1-N1-C4 C1-N1-C5 C4-N1-C5 N1-C1-C2 O1-C2-C1 C4-C3-C9 C4-C3-C10	108.5 (1) 112.1 (2) 111.4 (1) 109.1 (1) 110.7 (1) 110.7 (1)	109.4 111.5 111.6 110.3 110.3
$h = 0 \rightarrow 6$ $k = -10 \rightarrow 10$ $l = -16 \rightarrow 16$ 3 standard reflections frequency: 166.67 min	C1-N1-C5 C4-N1-C5 N1-C1-C2 O1-C2-C1 C4-C3-C9 C4-C3-C10	112.1 (2) 111.4 (1) 109.1 (1) 110.7 (1) 110.7 (1)	111.5 111.6 110.3 110.3
$k = -10 \rightarrow 10$ $l = -16 \rightarrow 16$ 3 standard reflections frequency: 166.67 min	C4N1C5 N1C1C2 O1C2C1 C4C3C9	111.4 (1) 109.1 (1) 110.7 (1) 110.7 (1)	111.6 110.3 110.3
$l = -16 \rightarrow 16$ 3 standard reflections frequency: 166.67 min	N1—C1—C2 O1—C2—C1 C4—C3—C9 C4—C3—C10	109.1 (1) 110.7 (1) 110.7 (1)	110.3 110.3
3 standard reflections frequency: 166.67 min	01	110.7 (1) 110.7 (1)	110.3
frequency: 166.67 min	C4 - C3 - C9 C4 - C3 - C10	110.7 (1)	100 2
frequency: 100.07 mm	CA_C3_C10		108.3
	c_{+}	110.2 (1)	111.4
intensity decay: 3.8%	C9C3C10	111.5 (1)	109.7
	N1-C4-C3	112.1 (1)	111.7
	C2—C6—C7	112.1 (1)	112.2
	02 - 07 - 03	121.9 (2)	124.1
	02 - C7 - C6	125.3 (2)	125.0
	01 - 02 - 06	105.0(1)	108.0
$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$	C1 - C2 - C0	113.8(1)	111.2
$\Delta \alpha = -0.08 \text{ e}^{3}$	01 - 03 - 04	109.3 (1)	109.3
$\Delta p_{\min} = -0.00 \ C A$	01 - 03 - 010	104.0(1)	106.4
Extilication correction:	03 C7 C6	1128(1)	111.7
$(1 + gI_c)^{-1}$ applied to F_c	C3-C10-C11	112.8 (1)	111.0
Extinction coefficient:		111.1 (2)	113.1
$q = 3.6(3) \times 10^{-6}$	N2_C12_C11	178.6(2)	170.3
Atomic scattering factors		1/0.0 (2)	179.5
	01—C2—C6—C7	-71.6(2)	-60.0
from Cromer (19/4) and	01-C3-C10-C11	-45.9 (2)	- 50.5
Cromer & Waber (1974)	$C_2 - C_6 - C_7 - O_3$	142.8 (1)	140.2
	L3-L10-L11-L12	-1/0.0(1)	1/9.2
	intensity decay: 3.8% $\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.08 \text{ e } \text{\AA}^{-3}$ Extinction correction: (1 + gI_c)^{-1} applied to F_c Extinction coefficient: g = 3.6 (3) × 10^{-6} Atomic scattering factors from Cromer (1974) and Cromer & Waber (1974)	frequency: 166.67 minC4-C3-C10intensity decay: 3.8%C9-C3-C10N1-C4-C3C2-C6-C702-C7-O302-C7-O302-C7-C601-C2-C6C1-C2-C601-C3-C4 $\Delta \rho_{min} = -0.08$ e Å ⁻³ 01-C3-C4 $\Delta \rho_{min} = -0.08$ e Å ⁻³ 01-C3-C4C1+g_c)^{-1} applied to F_c C3-C7-C6Extinction coefficient:C10-C11-C12 $g = 3.6$ (3) × 10^{-6}N2-C12-C11Atomic scattering factors01-C3-C4-C7-C3from Cromer (1974) andC2-C6-C7-O3Cromer & Waber (1974)C2-C6-C7-O3C3-C10-C11-C12C3-C10-C11-C12	frequency:166.67 min $C4-C3-C9$ 110.7 (1)intensity decay:3.8% $C9-C3-C10$ 110.2 (1) $N1-C4-C3$ 112.1 (1) $C2-C6-C7$ 112.1 (1) $C2-C6-C7$ 122.9 (2) $02-C7-C6$ 125.3 (2) $O2-C7-C6$ 125.3 (2) $01-C2-C6$ 105.0 (1) $\Delta \rho_{max} = 0.17$ e Å ⁻³ $O1-C3-C4$ 109.3 (1) $\Delta \rho_{min} = -0.08$ e Å ⁻³ $O1-C3-C4$ 109.3 (1) $\Delta r_{min} = -0.08$ e Å ⁻³ $O1-C3-C4$ 109.3 (1)Extinction correction: $O1-C3-C10$ 111.0 (1) $(1 + gI_c)^{-1}$ applied to F_c $C3-C7-C6$ 112.8 (1)Extinction coefficient: $C10-C11-C12$ 111.1 (2) $g = 3.6$ (3) $\times 10^{-6}$ $N2-C12-C11$ 178.6 (2)Atomic scattering factors $O1-C2-C6-C7$ -71.6 (2)from Cromer (1974) and $O1-C3-C10-C11$ -45.9 (2)Cromer & Waber (1974) $C2-C6-C7-O3$ 142.8 (1) $C3-C10-C11-C12$ -170.0 (1) $C3-C10-C11-C12$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$B_{\text{eq}} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j.$

	x	у	Z	Bea
01	0.1478 (2)	0.3437 (1)	0.77508 (6)	3.84 (2)
02	0.0572 (2)	0.6770(1)	0.5993 (1)	6.85 (4)
O3	0.4592 (2)	0.6267(1)	0.59987 (8)	5.33 (3)
N1	-0.1319 (3)	0.1366 (1)	0.7412(1)	5.00 (3)
N2	-0.6392 (4)	0.7041 (2)	0.8732(1)	8.44 (5)
C1	0.0433 (3)	0.1943 (2)	0.6707(1)	4.97 (4)
C2	0.0703 (3)	0.3509 (2)	0.6780(1)	3.82 (3)
C3	-0.0015 (3)	0.2750 (2)	0.8525(1)	4.04 (4)
C4	-0.0398 (3)	0.1219 (2)	0.8395(1)	5.19 (4)
C5	-0.1843 (4)	-0.0096 (2)	0.7321 (2)	1.71 (6)
C6	0.2589 (3)	0.4188 (2)	0.6118(1)	4.51 (4)
C7	0.2421 (3)	0.5856 (2)	0.6039(1)	4.34 (4)
C8	0.4578 (4)	0.7879 (2)	0.5869 (2)	6.75 (5)
C9	0.1474 (4)	0.2508 (2)	0.9463(1)	5.76 (5)
C10	-0.2458 (3)	0.3815 (2)	0.8519(1)	4.33 (4)
C11	-0.2261 (3)	0.5475 (2)	0.8417(1)	5.43 (4)
C12	-0.4585 (4)	0.6373 (2)	0.8589(1)	5.78 (5)

Table 2. Comparison of geometric parameters (Å, °) obtained from X-ray structure analysis and PCMODEL calculations

	X-ray	PCMODEL
01—C2	1.427 (2)	1.423
01—C3	1.444 (2)	1.426
02—C7	1.197 (2)	1.211
O3—C7	1.335 (2)	1.349
O3—C8	1.439 (2)	1.414
N1-C1	1.453 (2)	1.454
N1—C4	1.453 (2)	1.454
N1—C5	1.463 (3)	1.457
N2—C12	1.127 (3)	1.164
C1—C2	1.502 (2)	1.536
C2—C6	1.508 (2)	1.539
C3—C4	1.517 (3)	1.544
С3—С9	1.521 (2)	1.546
C3—C10	1.526 (2)	1.549
С6—С7	1.489 (2)	1.514
C10—C11	1.515 (2)	1.536
C11—C12	1.460 (2)	1.469

The *MolEN* programs (Fair, 1990) were used for structure solution and refinement.

The National Institutes of Health supported this work through grant GM42016.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and torsion angles have been deposited with the IUCr (Reference: CD1050). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Allen, F. H., Kennard, O. & Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.
- Colucci, W. J., Gandour, R. D., Fronczek, F. R., Brady, P. S. & Brady, L. J. (1987). J. Am. Chem. Soc. 109, 7915–7916.
- Colucci, W. J., Gandour, R. D. & Mooberry, E. A. (1986). J. Am. Chem. Soc. 108, 7141-7147.
- Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1, pp. 72-98. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Cromer, D. T. & Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Gajewski, J. J. & Gilbert, K. E. (1992). PCMODEL. Version 4.0. Molecular Modeling Package. (Available from Serena Software, PO Box 3076, Bloomington, IN 47402, USA.)
- Gandour, R. D., Blackwell, N. L., Colucci, W. J., Chung, C., Bieber, L. L., Ramsay, R. R., Brass, E. P. & Fronczek, F. R. (1992). J. Org. Chem. 57, 3426–3431.
- Serena Software (1992). GMMX. GLOBAL-MMX. Version 1.0. Steric Energy Minimization Program. (Available from Serena Software, PO Box 3076, Bloomington, IN 47402, USA.)